|
1) |
f(x) = (2x4-3x3)⋅(5x3+x+10) |
|
f'(x) = 70x6-90x5+10x4+68x3-90x2 |
|
2) |
|
|
f'(x) = | -28x4+24x3-16x2 | (-7x3+4x)2 |
|
|
3) |
f(x) = (-x2+8x)⋅(-3x4+3x3-8x2+3) |
|
f'(x) = 18x5-135x4+128x3-192x2-6x+24 |
|
4) |
|
|
f'(x) = | -x6-12x5+9x4+16x3+48x2 | (-x3-6x2+3x)2 |
|
|
5) |
f(x) = (-4x3+2x)⋅(-3x2+7x+7) |
|
f'(x) = 60x4-112x3-102x2+28x+14 |
|
6) |
f(x) = (4x3-x)⋅(x4-8) |
|
f'(x) = 28x6-5x4-96x2+8 |
|
7) |
f(x) = | 6x3-10 | -2x4-4x3+8x2+5x+7 |
|
|
f'(x) = | 12x6+48x4-20x3+6x2+160x+50 | (-2x4-4x3+8x2+5x+7)2 |
|
|
8) |
f(x) = (5)⋅(3x4+8x2+1) |
|
f'(x) = 60x3+80x |
|
9) |
f(x) = | -4x3+6x2-8x+6 | 6x4+3x-2 |
|
|
f'(x) = | 24x6-72x5+144x4-168x3+42x2-24x-2 | (6x4+3x-2)2 |
|
|
10) |
f(x) = (-x4-8x2)⋅(4x2+10) |
|
f'(x) = -24x5-168x3-160x |
|
11) |
f(x) = (6x4+x3+x)⋅(5x4+2x3-4x+5) |
|
f'(x) = 240x7+119x6+12x5-95x4+112x3+15x2-8x+5 |
|
12) |
f(x) = | -2x3+7x2-9 | -x4-x2+x-2 |
|
|
f'(x) = | -2x6+14x5+2x4-40x3+19x2-46x+9 | (-x4-x2+x-2)2 |
|
|
13) |
|
|
|
|
14) |
f(x) = | -x4-x3+8x2-3x | -6x4-7x3+7x2+8x |
|
|
f'(x) = | x6+82x5-29x4-58x3+85x2 | (-6x4-7x3+7x2+8x)2 |
|
|
15) |
f(x) = (3x3+x)⋅(-6x3) |
|
f'(x) = -108x5-24x3 |
|
16) |
f(x) = | x4+2x3+2x2-2x+6 | -6x2-8x |
|
|
f'(x) = | -12x5-36x4-32x3-28x2+72x+48 | (-6x2-8x)2 |
|
|
17) |
f(x) = (x4+7x3-2x2+4x+9)⋅(x4+2x2+2) |
|
f'(x) = 8x7+49x6+90x4+28x3+66x2+28x+8 |
|
18) |
f(x) = (3x3-4x2-8)⋅(-6x4+8x) |
|
f'(x) = -126x6+144x5+288x3-96x2-64 |
|
19) |
f(x) = (-4x4+6x3+6x2-5x)⋅(-7x3+9) |
|
f'(x) = 196x6-252x5-210x4-4x3+162x2+108x-45 |
|
20) |
|
|
f'(x) = | -2x6-16x5+24x4+8x3-18x2 | (-x3-4x2+1)2 |
|
|